Simultaneous, accurate measurement of the 3D position and orientation of single molecules.
نویسندگان
چکیده
Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the emitter concentration. However, anisotropic single-molecule emission patterns arise from the transition dipole when it is rotationally immobile, depending highly on the molecule's 3D orientation and z position. Failure to account for this fact can lead to significant lateral (x, y) mislocalizations (up to ∼50-200 nm). This systematic error can cause distortions in the reconstructed images, which can translate into degraded resolution. Using parameters uniquely inherent in the double-lobed nature of the Double-Helix Point Spread Function, we account for such mislocalizations and simultaneously measure 3D molecular orientation and 3D position. Mislocalizations during an axial scan of a single molecule manifest themselves as an apparent lateral shift in its position, which causes the standard deviation (SD) of its lateral position to appear larger than the SD expected from photon shot noise. By correcting each localization based on an estimated orientation, we are able to improve SDs in lateral localization from ∼2× worse than photon-limited precision (48 vs. 25 nm) to within 5 nm of photon-limited precision. Furthermore, by averaging many estimations of orientation over different depths, we are able to improve from a lateral SD of 116 (∼4× worse than the photon-limited precision; 28 nm) to 34 nm (within 6 nm of the photon limit).
منابع مشابه
Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V.
Single molecule fluorescence polarization techniques have been used for three-dimensional (3D) orientation measurements to observe the dynamic properties of single molecules. However, only few techniques can simultaneously measure 3D orientation and position. Furthermore, these techniques often require complex equipment and cumbersome analysis. We have developed a microscopy system and synthesi...
متن کاملDosimetric comparison of 3-dimensional conformal and intensity-modulated radiotherapy techniques for whole breast irradiation in the prone and supine positions
Background: The aim of this study was to compare the differences of the dosimetric parameters between three-dimensional conformal radiotherapy (3D-CRT) and simultaneous-integrated boost intensity-modulated radiotherapy (SIB-IMRT) techniques in the prone and supine positions for breast irradiation. Materials and Methods: Ten patients underwent a computed tomography simulation in both the prone a...
متن کاملDesign and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کاملAn Infrared Location System for Relative Pose Estimation of Robots
In this work we present an infrared location system for relative pose (position and orientation) estimation in a multi-robot system. Pose estimates are essential for tasks like cooperative simultaneous localization and mapping (C-SLAM), and formation control. In simultaneous localization and mapping (SLAM) relative pose estimates enable more accurate and less time-consuming map building. Respec...
متن کاملDeveloping a 3D stochastic discrete fracture network model for hydraulic analyses
Fluid flow in jointed rock mass with impermeable matrix is often controlled by joint properties, including aperture, orientation, spacing, persistence and etc. On the other hand, since the rock mass is made of heterogeneous and anisotropic natural materials, geometric properties of joints may have dispersed values. One of the most powerful methods for simulation of stochastic nature of geometri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 47 شماره
صفحات -
تاریخ انتشار 2012